
Security Assessment

Filet Staking
Jun 10th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
SCF-01 : State Variables Could Be Declared Constant�

SCF-02 : Remove Redundant State Variables And Modifier

SCF-03 : Missing Emit Events

SCF-04 : Proper Usage Of `view` And `pure` Type

SCF-05 : Missing Zero Address Validation

SCF-06 : Proper Usage of `public` And `external` Type

SCF-07 : Unreasonable Restrictions

SCF-08 : Divide Before Multiply

SCF-09 : Check If Order Is Exists

SCF-10 : Redundant Check In `redeem()`

SCF-11 : Incorrect Assignment Of `stopDayTime`

SCF-12 : Optimization For `checkisPremium()`

SCF-13 : Fee Need to Pay When Early Redemption

SCF-14 : Potential Cross-chain Data Integrity Issue

Appendix

Disclaimer

About

Filet Staking Security Assessment

Summary
This report has been prepared for Filet Staking smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Dynamic Analysis, Static

Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external smart contracts are implemented safely.

The security assessment resulted in 14 findings that ranged from minor to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Filet Staking Security Assessment

Overview

Project Summary

Project Name Filet Staking

Description Decentralized mining activity.

Platform BSC, Heco

Language Solidity

Codebase
https://github.com/fltproject/Filet/tree/9adb9f79d17ed6001e2e0992aa37dad607a10a39
https://github.com/fltproject/Filet/tree/8c8a8ea503aa67649c03aa21df60df42749e8639

Commit
<9adb9f79d17ed6001e2e0992aa37dad607a10a39>
<8c8a8ea503aa67649c03aa21df60df42749e8639>

Audit Summary

Delivery Date Jun 10, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 14

Critical 0

Major 0

Medium 0

Minor 5

Informational 9

Discussion 0

Filet Staking Security Assessment

https://github.com/fltproject/Filet/tree/9adb9f79d17ed6001e2e0992aa37dad607a10a39
https://github.com/fltproject/Filet/tree/8c8a8ea503aa67649c03aa21df60df42749e8639

Audit Scope

ID file SHA256 Checksum

SCF StakingCon.sol c8cf78b706c79107afb3516d8ebbbce7c5179c1de34f2cd5f0fc6fed390525ba

Filet Staking Security Assessment

Understandings
Overview

The Filet protocol is a decentralized mining activity deployed on the Binance smart chain(BSC) and Heco

smart chain(Heco). Filet employs a novel feature in its protocol.

Users can stake some form of tokens to get the mining power of FIL . Filet will distribute mined profit to

users based on their mining power. But when users would like to redeem from the contract in advance,

they must pay the aforementioned Fee . Users will not lose any staking asset since this Fee will not exceed

their profit.

Privileged Functions

The project contains the following privileged functions that are restricted by some modifiers. They are used

to modify the contract configurations and address attributes. We grouped these functions below:

The onlyOwner modifier：

Contract StakingCon :

function setAdmin(address newAdminUser)function setAdmin(address newAdminUser)

function transferOwnership(address newOwner)function transferOwnership(address newOwner)

The ownerAndAdmin modifier：

Contract StakingCon :

function switchOnContract(bool op)function switchOnContract(bool op)

function updateMinePool(function updateMinePool(

 updateMineInput memory updateParas, updateMineInput memory updateParas,

 uint256[] memory poolThredhold, uint256[] memory poolThredhold,

 uint[] memory serviceFeePercent uint[] memory serviceFeePercent

))

function updateOrderFee(updateUserOrderType[] memory updateOrders)function updateOrderFee(updateUserOrderType[] memory updateOrders)

function addFLTTokenContract(address fltToken)function addFLTTokenContract(address fltToken)

function addFILTokenContract(address filTokenCon)function addFILTokenContract(address filTokenCon)

Filet Staking Security Assessment

Findings

ID Title Category Severity Status

SCF-01
State Variables Could Be Declared
Constant�

Language Specific Informational Resolved

SCF-02
Remove Redundant State Variables And
Modifier

Gas Optimization Informational Resolved

SCF-03 Missing Emit Events Coding Style Informational Resolved

SCF-04 Proper Usage Of view And pure Type Gas Optimization Informational Resolved

SCF-05 Missing Zero Address Validation Logical Issue Informational Resolved

SCF-06
Proper Usage of public And
external Type

Gas Optimization Informational Resolved

SCF-07 Unreasonable Restrictions
Centralization /
Privilege

Minor Resolved

SCF-08 Divide Before Multiply
Mathematical
Operations

Minor Resolved

SCF-09 Check If Order Is Exists Logical Issue Informational Resolved

SCF-10 Redundant Check In redeem() Logical Issue Informational Resolved

SCF-11 Incorrect Assignment Of stopDayTime Logical Issue Minor Resolved

SCF-12 Optimization For checkisPremium() Gas Optimization Informational Resolved

SCF-13 Fee Need to Pay When Early Redemption
Centralization /
Privilege

Minor Acknowledged

Filet Staking Security Assessment

14
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 5 (35.71%)

Informational 9 (64.29%)

Discussion 0 (0.00%)

ID Title Category Severity Status

SCF-14 Potential Cross-chain Data Integrity Issue
Centralization /
Privilege

Minor Acknowledged

Filet Staking Security Assessment

SCF-01 | State Variables Could Be Declared Constant�

Category Severity Location Status

Language Specific Informational StakingCon.sol: 13~16 Resolved

Description

The variables that are not modified throughout the contract should be declared as constant variables.

Recommendation

We advise the client to consider modifying the variable secondsForOneDay and timeZoneDiff as following:

11 //一天的秒数//一天的秒数

22 uintuint privateprivate constantconstant secondsForOneDay secondsForOneDay == 8640086400;;

33
44 //时区调整//时区调整

55 uintuint privateprivate constantconstant timeZoneDiff timeZoneDiff == 2880028800;;

Alleviation

The team heeded our advice and added constant attribute. Code change was applied in commit :

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L13

SCF-02 | Remove Redundant State Variables And Modifier

Category Severity Location Status

Gas Optimization Informational StakingCon.sol: 28, 71~79, 183~190 Resolved

Description

The state variables

StakingCon._cfltTokenContract ,StakingCon.minerInfoList ,StakingCon.minerInterest , and modifier

onlyAdmin() are never used in contract StakingCon.sol .

Recommendation

We advise the client to consider removing the redundant state variables and modifier.

Alleviation

The team heeded our advice and removed the unused variables and modifier. Code change was applied in

commit : 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L28
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L71
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L183

SCF-03 | Missing Emit Events

Category Severity Location Status

Coding Style Informational StakingCon.sol: 203, 208, 550, 588, 594, 600, 633 Resolved

Description

The functions that affect the status of sensitive variables should be able to emit events as notifications to

customers.

setAdmin()

swithOnContract()

updateMinePool()

updateOrderFee()

addFLTTokenContract()

addFILTokenContract()

minerRetrieveToken()

Recommendation

We advise the client to consider adding events for sensitive actions and emit them in the functions.

11 eventevent SetAdminSetAdmin((addressaddress indexedindexed user user,, addressaddress indexedindexed _admin _admin));;

22
33 functionfunction setAdminsetAdmin((addressaddress newAdminUser newAdminUser)) externalexternal onlyOwner onlyOwner{{

44 _admin _admin == newAdminUser newAdminUser;;

55 emitemit SetAdminSetAdmin((msgmsg..sendersender,, _admin _admin));;

66 }}

Alleviation

The team heeded our advice and added events. Code change was applied in commit :

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L203
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L208
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L550
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L588
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L594
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L600
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L633

SCF-04 | Proper Usage Of view And pure Type

Category Severity Location Status

Gas Optimization Informational StakingCon.sol: 666, 672, 686 Resolved

Description

The functions that are not written to the storage of the smart contract can be defined as the view function.

If no read or write happen in the function, this function can be defined as a pure function.

Recommendation

We advise the client to consider modifying as demonstrated below:

11 functionfunction convertToDayTimeconvertToDayTime((uintuint forConvertTime forConvertTime)) internalinternal viewview returnsreturns ((uintuint)){{

22

33 }}

44
55 functionfunction checkisPremiumcheckisPremium((uint256uint256 amount amount,,uint256uint256[[]] memorymemory levelThredhold levelThredhold)) internalinternal purepure

returnsreturns ((uintuint)){{

66

77 }}

88
99 functionfunction convertTokenToPowerconvertTokenToPower((uint256uint256 amount amount,, uintuint poolID poolID)) internalinternal viewview returnsreturns

((uint256uint256)){{

1010

1111 }}

Alleviation

The team heeded our advice and added attribute view or pure to the functions. Code change was applied

in commit : 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L666
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L672
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L686

SCF-05 | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Informational StakingCon.sol: 203, 593, 599 Resolved

Description

The assigned values to _admin , _fltTokenContract and _filTokenContract should be verified as non-

zero values to prevent being mistakenly assigned as address(0) in the setAdmin() ,

addFLTTokenContract() and addFILTokenContract() functions respectively.

Recommendation

We advise the client to add input validators to guarantee the addresses are not zero in setAdmin() ,

addFLTTokenContract() and addFILTokenContract() functions as demonstrated below.

11 requirerequire((newAdminUser newAdminUser !=!= addressaddress((00)),, "newAdminUser is a zero address""newAdminUser is a zero address"));;

Alleviation

The team heeded our advice and added a zero check. Code change was applied in commit :

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L203
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L593
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L599

SCF-06 | Proper Usage of public And external Type

Category Severity Location Status

Gas Optimization Informational StakingCon.sol: 212, 221, 307, 386, 430, 563, 592, 598, 618 Resolved

Description

public functions that are never called by the contract could be declared external .

Recommendation

We advise the client to consider using the external attribute for functions never called from the contract.

Alleviation

The team heeded our advice and changed attribute public to external . Code change was applied in

commit : 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L212
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L221
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L307
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L386
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L430
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L563
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L592
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L598
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L618

SCF-07 | Unreasonable Restrictions

Category Severity Location Status

Centralization / Privilege Minor StakingCon.sol: 307, 386 Resolved

Description

Functions redeem() and getProfit() are decorated by modifier swithOn in which the value of _swithOn

can be decided by calling function swithOnContract() by _owner or _admin . Once users stake in the

minePool , if the _swithOn is set to false , users can not redeem or collect profit.

Recommendation

We advise the client to make sure users will not be blocked by swithOn when they redeem and collect

profit.

Alleviation

The team had removed the modifier. Code change was applied in commit :

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L307
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L386

SCF-08 | Divide Before Multiply

Category Severity Location Status

Mathematical Operations Minor StakingCon.sol: 688 Resolved

Description

According to the logic of function StakingCon.convertTokenToPower() , amount

divides10**minePoolMap[poolID].mPool.tokenPrecision before engaging in multiplication. In this case

amount may lose accuracy. If the value of amount is less than

10**minePoolMap[poolID].mPool.tokenPrecision , it will return 0.

Recommendation

We advise the client to consider ordering multiplication before division to prevent any loss of arithmetical

operation accuracy.

Alleviation

The team heeded our advice and ordered multiplication before division. Code change was applied in

commit : 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L688

SCF-09 | Check If Order Is Exists

Category Severity Location Status

Logical Issue Informational StakingCon.sol: 311~312, 387~388 Resolved

Description

Before using userOrder , it is better to check if userOrder exists.

Recommendation

We advise the client to consider adding a require check in functions redeem() and getProfit() as

demonstrated below:

11 requirerequire((userDatauserData[[msgmsg..sendersender]][[orderIDorderID]]..useruser!=!=addressaddress((00))));;

Alleviation

The team heeded our advice and added a require check for userOrder . Code change was applied in

commit : 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L311
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L387

SCF-10 | Redundant Check In redeem()

Category Severity Location Status

Logical Issue Informational StakingCon.sol: 340, 344 Resolved

Description

In line 344, the validation that curSubDayTime >= minePoolMap[uOrder.poolID].mPool.lockInterval had

already been executed in line 340.

Recommendation

We advise the client to consider modifying the codes as demonstrated below:

11 ifif((curSubDayTime curSubDayTime << minePoolMap minePoolMap[[uOrderuOrder..poolIDpoolID]]..mPoolmPool..expireTypeexpireType)){{

22

33 }} elseelse {{

44

55 }}

Alleviation

The team heeded our advice and changed the if and else statements. Code change was applied in commit

: 801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L340
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L344

SCF-11 | Incorrect Assignment Of stopDayTime

Category Severity Location Status

Logical Issue Minor StakingCon.sol: 355, 367 Resolved

Description

In line 355, the variable stopDayTime is assigned with the value of curSubDayTime , which is the number of

days between curDayTime and userCreateDayTime , like 30 days . But in line 367, the stopDayTime is

assigned with the value of curDayTime which represents a certain day like the value of 10.4.2021 .

According to the logic, stopDayTime should be assigned with a value of a certain day.

Recommendation

We advise the client to consider assigning stopDayTime with the value of curDayTime in line 355.

Alleviation

The team heeded our advice and corrected the assignment. Code change was applied in commit :

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L355
https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L367

SCF-12 | Optimization For checkisPremium()

Category Severity Location Status

Gas Optimization Informational StakingCon.sol: 674~681 Resolved

Description

Based on the observation of the logic of the smart contract, the values of the members in the array

levelThredhold are stored in ascending order. In the function checkisPremium() , the variable isPrem

was assigned multiple times. If traversed in reverse order, the variable isPrem can be assigned only once,

which will save gas cost for the project.

Recommendation

We advise the client to consider modifying as below:

11 uintuint isPrem isPrem == 00;;

22 forfor ((uintuint i i == levelThredhold levelThredhold..length length -- 11 ;; i i >=>= 00 ;; i i----)){{

33 ifif ((amount amount >=>= levelThredhold levelThredhold[[ii]])){{

44 isPrem isPrem == i i;;

55 breakbreak;;

66 }}

77 }}

88 returnreturn isPrem isPrem;;

Alleviation

The team heeded our advice and changed the traversing order. Code change was applied in commit:

801e07e1338d9ffd063e87fb2d4debcb5728e376.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L674

SCF-13 | Fee Need to Pay When Early Redemption

Category Severity Location Status

Centralization / Privilege Minor StakingCon.sol: 366~374 Acknowledged

Description

When users would like to redeem from the contract in advance, they need to pay the Fee which is decided

by _owner or _admin . If the Fee is greater than the profit the users will get back their adjusted principal.

Recommendation

We advise the client to carefully manage the private keys of _owner role's and _admin role's accounts and

avoid any potential risks of being hacked. In our professional opinion, we strongly recommend centralized

privileges or roles in the protocol to be improved via a decentralized mechanism or via smart-contract

based accounts with enhanced security practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to a

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

The team response: After users staked FIL , miners need to invest a certain amount to start packaging. If

the user redeems in advance after the packaging is completed, they need to bear a certain handling fee,

and there is no handling fee for the redemption at the time of expiration. Deciding to pay the handling fee

for early redemption is entirely up to the end user. The earlier you redeem, the higher the handling fee. The

amount of handling fee is relative to the packaging cost and maintenance cost (i.e., logistics, cost of

operation, etc.). The amount of the fee will not be more than the user's revenue. A such users' principal will

not get lost. The relevant data can be queried from Filecoin browsers such as Filfox or Filscan as a

reference, so the project party cannot set Fee’s arbitrarily.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L366

SCF-14 | Potential Cross-chain Data Integrity Issue

Category Severity Location Status

Centralization / Privilege Minor StakingCon.sol: 563 Acknowledged

Description

According to the cross-chain design of the project, the data will transfer between HECO/BSC chain and

the Filecoin chain. This must be done in a centralized cross-chain implementation. The owner of the cross-

chain implementation has the responsibility and privilege to handle the process of cross-chain data

transfers. Therefore, a centralized threat concern may be raised by the community on how data integrity

can be guaranteed in this implementation.

Recommendation

We strongly advise the client to make more efforts on improving transparency on the cross-chain

transaction process. For example, the client can opt to show more details about the miner's status on

Filecoin chain as currently they only address the miners and the distribution rate for the minter which can

be observed in Filscan.

Alleviation

The team response: The profit is generated on the Filecoin chain, and the profit distribution is on the

HECO/BSC chain, so Filet needs to transfer FIL across the chain by _owner or _admin . Users can

query the total income and unit computing power income data of the Filecoin node of their chosen miner

on Filecoin browsers such as Filfox or Filscan, and calculate the income allocated by themselves

according to their own computing power, thereby verifying the accuracy of the data calculated by Filet.

Filet Staking Security Assessment

https://github.com/fltproject/Filet/blob/9adb9f79d17ed6001e2e0992aa37dad607a10a39/contracts/StakingCon.sol#L563

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

Filet Staking Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Filet Staking Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Filet Staking Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Filet Staking Security Assessment

